Uncertainty of the Estimates of Explosion Hazard on the Example of Textile Manufactures

E.Yu. Kolesnikov, Cand. Sci. (Phys.-Math.), Assoc. Prof., e.konik@list.ru Volga Region State Technological University, Yoshkar-Ola, Russia


Dust explosions at the textile manufactures due to their destructive consequences constitute a serious danger. Unlike explosions of vapor-gas mixtures it is required to follow the «pentagon of conditions» for the dust explosion. The concept of uncertainty was introduced into the scientific use by economic science. Initially this concept had only the qualitative aspect, it acquired the quantitative aspect owing to metrology. Due to the number of objective and subjective reasons, any quantitative parameter that characterizes one or another property of a physical quantity is uncertain. This means that indicating its value with a scalar, point number is only a rough, «zero» approximation. Parametric, model, terminological and computational types of uncertainty are distinguished. In a situation when the value of the parameter does not have statistical stability, the probabilistic approach is not applicable, parametric uncertainty can be specified by an interval. Interval analysis studies performance of the mathematical operations on the intervals. Calculations within the original (naive) version in some cases are accompanied by a large computational uncertainty. The methods of its leveling are developed, there are also corresponding software tools. The article shows the interval calculation of maximum dust explosion pressure in the conventional workshop of the linen factory, which had been made using INTLAB version 10.1 package.


1. Abbasi T., Abbasi S.A. Dust explosions — Cases, causes, consequences and control. Journal of Hazardous Materials. 2007. Vol. 140. pp. 7–44.
2. Lee’s loss prevention in the process industries. 3rd ed. Elsevier, 2005. Vol. 2. 1082 p.
3. Xing-Qing Yan and Jian-Liang Yu. Dust Explosion Incidents in China. Available at: http://booksc.org/book/11752373/191dd5 (accessed: October 10, 2017).
4. Kauffman C.W. Agricultural dust explosions in grain handling facilities. Waterloo: University of Waterloo Press, 1982. pp. 305–347.
5. Kolesnikov E.Yu. Quantitative estimation of technogenic risk uncertainty. Pt 1. Problemy analiza riska = The Problems of Risk Analysis. 2013. Vol. 10. № 2. pp. 48–71.
6. Report on the BIMP enquiry on error statements. BIPM, 1980.
7. JCGM 100:2008. Evaluation of measurement data — Guide to the expression of uncertainty in measurement. Available at: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E (accessed: October 10, 2017).
8. Periodic Table of Elements. Available at: https://www.iupac.org/cms/vvp-content/uploads/2015/07/IUPAC_Periodic_Table-28Novl6.jpg (accessed: October 10, 2017).
9. GOST 12.1.041—83. Sistema standartov bezopasnosti truda (SSBT). Pozharovzryvobezopasnost goryuchikh pyley. Obshchie trebovaniya (s Izmeneniyami № 1, 2) (GOST 12.1.041—83. Occupational Safety Standards System (OSSS). Fire and explosion safety of combustible dusts. General requirements (with Amendments № 1, 2). Available at: http://docs.cntd.ru/document/5200294 (accessed: October 10, 2017).
10. GOST 12.1.044—89 (ISO 4589—84). Sistema standartov bezopasnosti truda (SSBT). Pozharovzryvoopasnost veshchestv i materialov. Nomenklatura pokazateley i metody ikh opredeleniya (s Izmeneniem № 1) (GOST 12.1.044—89 (ISO 4589—84). Occupational Safety Standards System (OSSS). Fire and explosion hazard of the substances and materials. Nomenclature of indicators and the methods for determining them (with Amendment № 1). Available at: http://docs.cntd.ru/document/1200004802 (accessed: October 10, 2017).
11. BS 2955:1958. Glossary of Terms Relating to Powders. № 505. London: British Standard Institute, 1958.
12. NFPA 68. Guide for Venting of Deflagrations. Available at: http://www.hysafe.org/img/NFPA68_2002.pdf (accessed: October 10, 2017).
13. Kolesnikov E.Yu., Telyakov E.Sh. Terminological uncertainty: experience of quantitative assessment. Bezopasnost Truda v Promyshlennosti = Occupational Safety in Industry. 2016. № 7. pp. 82-88.
14. Khudson D. Statistika dlya fizikov (Statistics for Physicists). Moscow: Mir, 1967. 243 p.
15. Young R.C. The algebra of many-valued quantities. Available at: http://www.cs.utep.edu/interval-comp/young.pdf (accessed: October 10, 2017).
16. Sharyi S.P. Konechnomernyy intervalnyy analiz (Finite-dimensional interval analysis). Available at: http://www.nsc.ru/interval (accessed: October 10, 2017).
17. Rump S.M. INTLAB — INTerval LABoratory. In Tibor Csendes. Dordrecht: Kluwer Academic Publishers, 1999. pp. 77–104.
18. GOST R 12.3.047—2012. Sistema standartov bezopasnosti truda (SSBT). Pozharnaya bezopasnost tekhnologicheskikh protsessov. Obshchie trebovaniya. Metody kontrolya (GOST R 12.3.047—2012. Occupational Safety Standards System (OSSS). Fire safety of technological processes. General requirements. Control methods). Available at: http://docs.cntd.ru/document/1200103505 (accessed: October 10, 2017).
19. Smolin I.M., Poletayev N.L., Gordiyenko D.M., Shebeko Yu.N., Smirnov E.V. Opredelenie kategoriy pomeshcheniy, zdaniy i naruzhnykh ustanovok po vzryvopozharnoy i pozharnoy opasnosti: posobie po primeneniyu SP 12.13130.2009 (Determination of the Categories of Rooms, Buildings and External Installations on Fire and Explosion and Fire Hazard: Textbook on Application of SP 12.13130.2009). Moscow: VNIIPO, 2014. 147 p.
20. Kolesnikov E.Yu., Kolodkin V.M. About the methods of calculating the metrics of emergency risk in the presence of uncertainty. Problemy analiza riska = The Problems of Risk Analysis. 2016. Vol. 13. № 5. pp. 20–34.
21. Voshinin A.P. Analysis tasks with uncertain data —interval and/or accident? Intervalnaya matematika i rasprostranenie ogranicheniy. Rabochie soveshchaniya (MKVM – 2004. Interval Mathematics and Distribution of Limitations. Workshops). 2004. pp. 147–158.
22. Sharyi S.P. Interval analysis or Monte Carlo methods? Vychislitelnye tekhnologii = Computational Technologies. 2007. Vol. 12. № 1. pp. 103–115.
23. Semyonov K.K. Reliability of the results of application of Monte Carlo method in the interval analysis tasks. Vychislitelnye tekhnologii = Computational Technologies. 2016. Vol. 21. № 2. pp. 42–52.

DOI: 10.24000/0409-2961-2017-11-38-41
Year: 2017
Issue num: November
Keywords : dust explosion uncertainty interval number interval calculation
  • Kolesnikov E.Yu.
    Kolesnikov E.Yu.
    Cand. Sci. (Phys.-Math.), Assoc. Prof., e.konik@list.ru Volga State University of Technology, Yoshkar-Ola, Russia