Energy of Deep Geothermal Deposits and Radioactive Waste Final Disposal

G. Rafat, Prof., Company Director, R&K-Geoengineering Ltd, Duisburg, Germany S. Bissmann, Project Manager B. Lehmann, Prof., Deputy General Manager B. Dombrowski, Master of Business Administration, Senior Geophysicist DMT GmbH & Co. KG, Essen, Germany A.Yu. Vedyaev, Cand. Sci. (Eng.), Chief Geologist Alcomp-Engineering, Moscow, Russia


Study of geothermal energy sources located at depth, as well as the construction of deep deposit for final radioactive waste disposal requires special attention with regard to geological and geophysical research methods, because the search and construction of the facilities are conducted according to the requirements established by the German law. Engineering-geological barrier effect of rocks and the determination of the volumetric hydraulic permeability in situ are critical. While deep geothermal sources require a porous rock complex with good permeability, for the final disposal of radioactive waste, those geological formations are searched that do not have porosity and exclude water permeability to prevent possible environmental pollution. The Law on Atomic Energy in the Federal Republic of Germany regulates the technology for selection of the disposal sites. Mainly in Germany, the host rocks such as rock salt, clays and crystalline rocks are considered as disposal sites for highly radioactive waste. In the assumed location, the disposal takes place in deep geological formations in the specially created workings for complete sealing (at least 1 million years). The possibility of re-disposal is foreseen during the entire period of permanent disposal functioning and extraction for 500 years after the planned sealing of the final disposal. In the German Mining Regulations it is noted that the free minerals for search include the heat of the Earth and other forms of energy that appear in connection with its mining, i.e. the heat of the Earth is not owned by the owner of the site, but it belongs to everyone (the state). Geological and geophysical methods are considered for studying the structures suitable for locating deep disposal areas there for radioactive waste final disposal. Exploration and research are aimed at using primarily measuring geophysical methods to identify the foundation structures, calculate the geological model during data processing and interpretation, visualize it and thereby determine the optimal well location points in order to search for suitable locations to create underground disposal areas or suitable sites for deep geothermometry.


1. Rafat G. Verfahren zur Ermittlung von Durchlässigkeiten in Endlagerungsdeponien zur Abschätzung der möglichen Kontamination der Biosphäre. Das Markscheideswesen. 1998. № 1.
2. Rafat G. Strukturaufnahmen von Standorten für Untertage-Deponien mit Hilfe stereophotogrammetrischer Auswerteverfahren. WBK-Umwelt-Symposium. Bochum: Deutsche Bergbau-Museum, 1988.
3. Rafat G., Heckes J. Photogrammetrische Verfahren für gefügetektonische Auswertungen in den Schächten 1 und 2 in Gorleben. Peine: Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH (DBE), 1989.
4. Röhlig K.-J., Geckeis H., Mengel K. Endlagerung radioaktiver Abfälle. Teil 1: Fakten und Konzepte. Chemie in unserer Zeit. 2012. Bd. 46. № 3. S. 140–149. doi: 10.1002/ciuz.201200578
5. Röhlig K.-J., Geckeis H., Mengel K. Endlagerung radioaktiver Abfälle. Teil 2: Die Wirtsgesteine: Tonstein, Granit, Steinsalz. Chemie in unserer Zeit. 2012. Bd. 46. № 4. S. 208–217. doi: 10.1002/ciuz.201200582
6. Röhlig K.-J., Geckeis H., Mengel K. Endlagerung radioaktiver Abfälle. Teil 3: Chemie im Endlagersystem. Chemie in unserer Zeit. 2012. Bd. 46. № 5. S. 282–293. doi: 10.1002/ciuz.201200583
7. Juristisches Informationssystem für die BRD: Atom Gesetzt. Available at: (accessed: November 9, 2018).
8. Sherriff R.E., Geldart L.P. Exploration Seismology. 2nd Ed. Cambridge: Cambridge University Press, 1995. 590 p.
9. Misiek R., Bißmann S. Mit Seismik den optimalen Standort finden — Strukturerkundung geothermischer Lagerstätten. BBR Sonderheft Geothermie. 2010. Heft 10. S. 49–51.
10. Schubert A. Erfahrungsaustausch Kommunale Geothermieprojekte. Augsburg, 2013.
11. Bißmann S., Kahnt R. Reflexionsseismische Exploration. Tiefe Geothermie. Berlin: Springer-Verlag, 2014. S. 82–122.
12. Lüschen E., Dussel M., Thomas M., Schulz R. 3D seismic survey for geothermal exploration at Unterhaching, Munich, Germany. First Break. 2011. Vol. 29. № 1. pp. 45–54.
13. Chopra S., Marfurt K.J. Seismic Attributes for Prospect Identification and Reservoir Characterization. Tulsa, 2007. 239 p.
14. Bißmann S., Rüter H., Loske B. Seismische Attribute und ihre Interpretation. Geothermische Energie. 2014. Heft 79. S. 12–14.
15. Thomas R., Lüschen E., Schulz R. Seismic reflection exploration of Karst phenomena of a geothermal reservoir in Southern Germany. Proceedings of the World Geothermal Congress. Bali, 2010.
16. Schroder D., Weber M. Precise Positioning and 3D Documenting of the Underground Workings using the DMT Pilot 3D Navigation System. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2018. № 4. pp. 66–73. DOI: 10.24000/0409-2961-2018-4-66-73 (In Russ.).
17. Bißmann S., Loske B. PreStack-Tiefenmigration und Vertical Seismic Profiling als Bestandteile des Demonstrationsvorhabens. BBR Sonderheft Geothermie. Bonn, 2014. S. 86–90.

DOI: 10.24000/0409-2961-2018-12-7-15
Year: 2018
Issue num: December
Keywords : deep geothermometry radioactive waste disposal sites nuclear energy law geological structure exploration geological and geophysical measurement methods seismic measurement methods 2D and 3D modeling reservoir properties depth migration vertical seismic profiling BHS interpretation of reflective surfaces